
Preface 

When ChatGPT came out, like many of my colleagues, I was disoriented. What sur­
prised me wasn't the model's size or capabilities. For over a decade, the AI commu­
nity has known that scaling up a model improves it. In 2012, the AlexNet authors 
noted in their landmark paper (https:!/oreil.ly/XG3mv) that: "All of our experiments 
suggest that our results can be improved simply by waiting for faster GPUs and big­
ger datasets to become available."1

• 
2 

What surprised me was the sheer number of applications this capability boost 
unlocked. I thought a small increase in model quality metrics might result in a mod­
est increase in applications. Instead, it resulted in an explosion of new possibilities. 

Not only have these new AI capabilities increased the demand for AI applications, 
but they have also lowered the entry barrier for developers. It's become so easy to get 
started with building AI applications. It's even possible to build an application 
without writing a single line of code. This shift has transformed AI from a specialized 
discipline into a powerful development tool everyone can use. 

Even though AI adoption today seems new, it's built upon techniques that have been 
around for a while. Papers about language modeling came out as early as the 1950s. 
Retrieval-augmented generation (RAG) applications are built upon retrieval technol­
ogy that has powered search and recommender systems since long before the term 
RAG was coined. The best practices for deploying traditional machine learning appli­
cations-systematic experimentation, rigorous evaluation, relentless optimization for 
faster and cheaper models-are still the best practices for working with foundation 
model-based applications. 

I An author of the AlexNet paper, Ilya Sutskever, went on to cofound OpenAI, turning this lesson into reality 
with GPT models. 

2 Even my small project in 2017 (https://x.com!chipro/status/937384141791698944), which used a language 
model to evaluate translation quality, concluded that we needed "a better language model." 
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The familiarity and ease of use of many AI engineering techniques can mislead peo­
ple into thinking there is nothing new to AI engineering. But while many principles 
for building AI applications remain the same, the scale and improved capabilities of 
AI models introduce opportunities and challenges that require new solutions. 

This book covers the end-to-end process of adapting foundation models to solve real­
world problems, encompassing tried-and-true techniques from other engineering 
fields and techniques emerging with foundation models. 

I set out to write the book because I wanted to learn, and I did learn a lot. I learned 
from the projects I worked on, the papers I read, and the people I interviewed. 
During the process of writing this book, I used notes from over 100 conversations 
and interviews, including researchers from major AI labs (OpenAI, Google, 
Anthropic, ... ), framework developers (NVIDIA, Meta, Hugging Face, Anyscale, 
LangChain, Llamaindex, ... ), executives and heads of AI/data at companies of differ­
ent sizes, product managers, community researchers, and independent application 
developers (see "Acknowledgments" on page xx). 

I especially learned from early readers who tested my assumptions, introduced me to 
different perspectives, and exposed me to new problems and approaches. Some sec­
tions of the book have also received thousands of comments from the community 
after being shared on my blog (https://huyenchip.com/blog/), many giving me new 
perspectives or confirming a hypothesis. 

I hope that this learning process will continue for me now that the book is in your 
hands, as you have experiences and perspectives that are unique to you. Please 
feel free to share any feedback you might have for this book with me via X (https:/1 
x.comlchipro), Linkedln (https:l/www.linkedin.com/in/chiphuyen), or email at 
hi@huyenchip.com. 

What This Book Is About 
This book provides a framework for adapting foundation models, which include both 
large language models (LLMs) and large multimodal models (LMMs), to specific 
applications. 

There are many different ways to build an application. This book outlines various 
solutions and also raises questions you can ask to evaluate the best solution for your 
needs. Some of the many questions that this book can help you answer are: 

• Should I build this AI application? 

• How do I evaluate my application? Can I use AI to evaluate AI outputs? 

• What causes hallucinations? How do I detect and mitigate hallucinations? 

• What are the best practices for prompt engineering? 
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• Why does RAG work? What are the strategies for doing RAG? 

• What's an agent? How do I build and evaluate an agent? 

• When to finetune a model? When not to finetune a model? 

• How much data do I need? How do I validate the quality of my data? 

• How do I make my model faster, cheaper, and secure? 

• How do I create a feedback loop to improve my application continually? 

The book ""ill also help you navigate the overwhelming AI landscape: types of mod­
els, evaluation benchmarks, and a seemingly infinite number of use cases and appli­
cation patterns. 

The content in this book is illustrated using case studies, many of which I worked on, 
backed by ample references and extensively reviewed by experts from a wide range of 
backgrounds. Although the book took two years to write, it draws from my experi­
ence working with language models and ML systems from the last decade. 

Like my previous O'Reilly book, Designing Machine Learning Systems (DMLS), this 
book focuses on the fundamentals of AI engineering instead of any specific tool or 
APL Tools become outdated quickly, but fundamentals should last longer.3 

Reading Al Engineering (AIE) with Designing 
Machine Learning Systems (DMLS) 

AIE can be a companion to DMLS. DMLS focuses on building applications on top of 
traditional ML models, which involves more tabular data annotations, feature engi­
neering, and model training. AIE focuses on building applications on top of founda­
tion models, which involves more prompt engineering, context construction, and 
parameter-efficient finetuning. Both books are self-contained and modular, so you 
can read either book independently. 

Since foundation models are ML models, some concepts are relevant to working with 
both. If a topic is relevant to AIE but has been discussed extensively in DMLS, it'll still 
be covered in this book, but to a lesser extent, with pointers to relevant resources. 

Note that many topics are covered in DMLS but not in AIE, and vice versa. The first 
chapter of this book also covers the differences between traditional ML engineering 
and AI engineering. A real-world system often involves both traditional ML models 
and foundation models, so knowledge about working with both is often necessary. 

3 Teaching a course on how to use Tensor Flow in 2017 taught me a painful lesson about how quickly tools and 
tutorials become outdated. 
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Determining whether something will last, however, is often challenging. I relied on 
three criteria. First, for a problem, I determined whether it results from the funda­
mental limitations of how AI works or if it'll go away with better models. If a problem 
is fundamental, I'll analyze its challenges and solutions to address each challenge. I'm 
a fan of the start-simple approach, so for many problems, I'll start from the simplest· 
solution and then progress with more complex solutions to address rising challenges. 

Second, I consulted an extensive network of researchers and engineers, who are 
smarter than I am, about what they think are the most important problems and 
solulions. 

Occasionally, I also relied on Lindy's Law (https://en.wikipedia.org/wiki!Lindy_effect), 
which infers that the future life expectancy of a technology is proportional to its cur­
rent age. So if something has been around for a while, I assume that it'll continue 
existing for a while longer. 

In this book, however, I occasionally included a concept that I believe to be tempo­
rary because it's immediately useful for some application developers or because it 
illustrates an interesting problem-solving approach. 

What This Book Is Not 
This book isn't a tutorial. While it mentions specific tools and includes pseudocode 
snippets to illustrate certain concepts, it doesn't teach you how to use a tool. Instead, 
it offers a framework for selecting tools. It includes many discussions on the trade­
offs between different solutions and the questions you should ask when evaluating a 
solution. When you want to use a tool, it's usually easy to find tutorials for it online. 
AI chatbots are also pretty good at helping you get started with popular tools. 

This book isn't an ML theory book. It doesn't explain what a neural network is or 
how to build and train a model from scratch. While it explains many theoretical con­
cepts immediately relevant to the discussion, the book is a practical book that focuses 
on helping you build successful AI applications to solve real-world problems. 

While it's possible to build foundation model-based applications without ML exper­
tise, a basic understanding of ML and statistics can help you build better applications 
and save you from unnecessary suffering. You can read this book without any prior 
ML background. However, you will be more effective while building AI applications 
if you know the following concepts: 

• Probabilistic concepts such as sampling, determinism, and distribution. 

• ML concepts such as supervision, self-supervision, log-likelihood, gradient 
descent, backpropagation, loss function, and hyperparameter tuning. 
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• Various neural network architectures, including feedforward, recurrent, and 
transformer. 

• Metrics such as accuracy, Fl, precision, recall, cosine similarity, and cross 
entropy. 

If you don't know them yet, don't worry-this book has either brief, high-level 
explanations or pointers to resources that can get you up to speed. 

Who This Book Is For 
This book is for anyone who wants to leverage foundation models to solve real-world 
problems. This is a technical book, so the language of this book is geared toward 
technical roles, including AI engineers, ML engineers, data scientists, engineering 
managers, and technical product managers. This book is for you if you can relate to 
one of the following scenarios: 

• You're building or optimizing an AI application, whether you're starting from 
scratch or looking to move beyond the demo phase into a production-ready 
stage. You may also be facing issues like hallucinations, security, latency, or costs, 
and need targeted solutions. 

• You want to streamline your team's AI development process, making it more 
systematic, faster, and reliable. 

• You want to understand how your organization can leverage foundation models 
to improve the business's bottom line and how to build a team to do so. 

You can also benefit from the book if you belong to one of the following groups: 

• Tool developers who want to identify underserved areas in AI engineering to 
position your products in the ecosystem. 

• Researchers who want to better understand AI use cases. 

• Job candidates seeking clarity on the skills needed to pursue a career as an AI 
engineer. 

• Anyone wanting to better understand Al's capabilities and limitations, and how 
it might affect different roles. 

I love getting to the bottom of things, so some sections dive a bit deeper into the tech­
nical side. While many early readers like the detail, it might not be for everyone. I'll 
give you a heads-up before things get too technical. Feel free to skip ahead if it feels a 
little too in the weedsl 
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Navigating This Book 
This book is structured to follow the typical process for developing an AI application. 
Here's what this typical process looks like and how each chapter fits into the process. 
Because this book is modular, you're welcome to skip any section that you're already 
familiar with or that is less relevant to you. 

Before deciding to build an AI application, it's necessary to understand what this pro­
cess involves and answer questions such as: Is this application necessary? ls AI 
needed? Do I have to build this application myself? The first chapter of the book 
helps you answer these questions. It also covers a range of successful use cases to give 
a sense of what foundation models can do. 

While an ML background is not necessary to build AI applications, understanding 
how a foundation model works under the hood is useful to make the most out of it. 
Chapter 2 analyzes the making of a foundation model and the design decisions with 
significant impacts on downstream applications, including its training data recipe, 
model architectures and scales, and how the model is trained to align to human pref­
erence. It then discusses how a model generates a response, which helps explain the 
model's seemingly baffling behaviors, like inconsistency and hallucinations. Chang­
ing the generation setting of a model is also often a cheap and easy way to signifi­
cantly boost the model's performance. 

Once you've committed to building an application with foundation models, evalua­
tion will be an integral part of every step along the way. Evaluation is one of the hard­
est, if not the hardest, challenges of Al engineering. This book dedicates two chapters, 
Chapters 3 and 4, to explore different evaluation methods and how to use them to 
create a reliable and systematic evaluation pipeline for your application. 

Given a query, the quality of a model's response depends on the following aspects 
( outside of the model's generation setting): 

• The instructions for how the model should behave 

• The context the model can use to respond to the query 

• The model itself 

The next three chapters of the book focus on how to optimize each of these aspects to 
improve a model's performance for an application. Chapter 5 covers prompt engi­
neering, starting with what a prompt is, why prompt engineering works, and prompt 
engineering best practices. It then discusses how bad actors can exploit your applica­
tion with prompt attacks and how to defend your application against them. 

Chapter 6 explores why context is important for a model to generate accurate respon­
ses. It zooms into two major application patterns for context construction: RAG and 
agentic. The RAG pattern is better understood and has proven to work well in 
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• · production. On the other hand, while the agentic pattern promises to be much more 
powerful, it's also more complex and is still being explored . 

• • Chapter 7 is about how to adapt a model to an application by changing the model 
itself with finetuning. Due to the scale of foundation models, native model finetuning 
is memory-intensive, and many techniques are developed to allow finetuning better 
models with less memory. The chapter covers different finetuning approaches, sup­
plemented by a more experimental approach: model merging. This chapter contains 
a more technical section that shows how to calculate the memory footprint of a 
model. 

Due to the availability of many finetuning frameworks, the finetuning process itself is 
often straightforward. However, getting data for finetuning is hard. The next chapter 
is all about data, including data acquisition, data annotations, data synthesis, and data 
processing. Many of the topics discussed in Chapter 8 are relevant beyond finetuning, 
including the question of what data quality means and how to evaluate the quality of 
your data. 

If Chapters 5 to 8 are about improving a model's quality, Chapter 9 is about making 
its inference cheaper and faster. It discusses optimization both at the model level and 
inference service level. If you're using a model API-i.e., someone else hosts your 
model for you-this AP! will likely take care of inference optimization for you. How­
ever, if you host the model yourself-either an open source model or a model devel-
oped in-house-you'll need to implement many of the techniques discussed in this 
chapter. 

The last chapter in the book brings together the different concepts from this book to 
build an application end-to-end. The second part of the chapter is more product­
focused, with discussions on how to design a user feedback system that helps you col­
lect useful feedback while maintaining a good user experience. 

I often use "we" in this book to mean you (the reader) and I. It's a 
habit I got from my teaching days, as I saw writing as a shared 
learning experience for both the writer and the readers. 

Conventions Used in This Book 
The following typographical conventions are used in this book: 

Italic 
Indicates new terms, URLs, email addresses, filenames, and file extensions. 
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Constant wi.dth 
Used for program listings, as well as within paragraphs to refer to program ele­
ments such as variable or function names, databases, data types, environment 
variables, statements, input prompts into models, and keywords. 

Constant wtdth bold 
Shows commands or other text that should be typed literally by the user. 

Constant width italic 
Shows text that should be replaced with user-supplied values or by values deter­
mined by context. 

This element signifies a tip or suggestion. 

This element signifies a general note. 

This element indicates a warning or caution. 

Using Code Examples 
Supplemental material (code examples, exercises, etc.) is available for download at 
https:l!github.com/chiphuyenlaie-book. The repository contains additional resources 
about AI engineering, including important papers and helpful tools. It also covers 
topics that are too deep to go into in this book. For those interested in the process of 
writing this book, the GitHub repository also contains behind-the-scenes informa­
tion and statistics about the book. 

If you have a technical question or a problem using the code examples, please send 
email to support@oreilly.com. 

This book is here to help you get your job done. In general, if example code is offered 
with this book, you may use it in your programs and documentation. You do not 
need to contact us for permission unless you're reproducing a significant portion 
of the code. For example, writing a program that uses several chunks of code from 
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this book does not require permission. Selling or distributing examples from O'Reilly 
books does require permission. Answering a question by citing this book and quoting 
example code does not require permission. Incorporating a significant amount of 
example code from this book into your product's documentation does require 
permission. 

We appreciate, but generally do not require, attribution. An attribution usually 
includes the title, author, publisher, and ISBN. For example: "AI Engineering by 
Chip Huyen (O'Reilly). Copyright 2025 Developer Experience Advisory LLC, 
978-1-098-16630-4." 

If you feel your use of code examples falls outside fair use or the permission given 
above, feel free to contact us at permissions@oreilly.com. 

O'Reilly Online Learning 

For more than 40 years, O'Reilly Media has provided technol­
ogy and business training, knowledge, and insight to help 
companies succeed. 

Our unique network of experts and innovators share their knowledge and expertise 
through books, articles, and our online learning platform. O'Reilly's online learning 
platform gives you on-demand access to live training courses, in-depth learning 
paths, interactive coding environments, and a vast collection of text and video from 
O'Reilly and 200+ other publishers. For more information, visit https:!/oreilly.com. 

How to Contact Us 
Please address comments and questions concerning this book to the publisher: 

O'Reilly Media, Inc. 
1005 Gravenstein Highway North 
Sebastopol, CA 95472 
800-889-8969 (in the United States or Canada) 
707-827-7019 (international or local) 
707-829-0104 (fax) 
support@oreilly.com 
https:!!oreilly.com!about/contact.html 

We have a web page for this book, where we list errata, examples, and any additional 
information. You can access this page at https://oreil.ly!ai-engineering . 
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CHAPTER 1 

Introduction to Building Al Applications 
with Foundation Models 

If I could use only one word to describe AI post-2020, it'd be scale. The AI models 
behind applications like ChatGPT, Google's Gemini, and Midjourney are at such a 
scale that they're consuming a nontrivial portion (https:!!oreil.ly!J0iyO) of the world's 
electricity, and we're at risk of running out of publicly available internet data (https:// 
arxiv.org!abs/2211.04325) to train them. 

The scaling up of AI models has two major consequences. First, AI models are 
becoming more powerful and capable of more tasks, enabling more applications. 
More people and teams leverage AI to increase productivity, create economic value, 
and improve quality oflife. 

Second, training large language models (LLMs) requires data, compute resources, 
and specialized talent that only a few organizations can afford. This has led to the 
emergence of model as a service: models developed by these few organizations are 
made available for others to use as a service. Anyone who wishes to leverage AI to 
build applications can now use these models to do so without having to invest up 
front in building a model. 

In short, the demand for AI applications has increased while the barrier to entry for 
building AI applications has decreased. This has turned AI engineering-the process 
of building applications on top of readily available models-into one of the fastest­
growing engineering disciplines. 

Building applications on top of machine learning (ML) models isn't new. Long before 
LLMs became prominent, AI was already powering many applications, including 
product recommendations, fraud detection, and churn prediction. While many prin­
ciples of productionizing AI applications remain the same, the new generation of 



large-scale, readily available models brings about new possibilities and new chal­
lenges, which are the focus of this book. 

This chapter begins with an overview of foundation models, the key catalyst behind 
the explosion of AI engineering. I'll then discuss a range of successful AI use cases, 
each illustrating what AI is good and not yet good at. As AI's capabilities expand 
daily, predicting its future possibilities becomes increasingly challenging. However, 
existing application patterns can help uncover opportunities today and offer clues 
about how AI may continue to be used in the future. 

To close out the chapter, I'll provide an overview of the new AI stack, including what 
has changed with foundation models, what remains the same, and how the role of an 
Al engineer today differs from that of a traditional ML engineer. 1 

The Rise of Al Engineering 
Foundation models emerged from large language models, which, in turn, originated 
as just language models. While applications like ChatGPT and GitHub's Copilot may 
seem to have come out of nowhere, they are the culmination of decades of technology 
advancements, with the first language models emerging in the 1950s. This section 
traces the key breakthroughs that enabled the evolution from language models to AI 
engineering. 

From Language Models to Large Language Models 
While language models have been around for a while, they've only been able to grow 
to the scale they are today with self-supervision. This section gives a quick overview of 
what language model and self-supervision mean. If you're already familiar with those, 
feel free to skip this section. 

Language models 
A language model encodes statistical information about one or more languages. Intui­
tively, this information tells us how likely a word is to appear in a given context. For 
example, given the context "My favorite color is_", a language model that encodes 
English should predict "blue" more often than "car". 

I In this book, I use traditional ML to refer to all ML before foundation models. 
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The statistical nature of languages was discovered centuries ago. In the 1905 story 
"The Adventure of the Dancing Men" (https:1/en.wikipedia.org/wiki/The_Adven 
ture_of_the_Dancing_Men), Sherlock Holmes leveraged simple statistical informa­
tion of English to decode sequences of mysterious stick figures. Since the most 
common letter in English is E, Holmes deduced that the most common stick figure 
must stand for E. 

Later on, Claude Shannon used more sophisticated statistics to decipher enemies' 
messages during the Second World War. His work on how to model English was 
published in his 1951 landmark paper "Prediction and Entropy of Printed English" 
(https://oreil.ly!G_HBp). Many concepts introduced in this paper, including entropy, 
are still used for language modeling today. 

In the early days, a language model involved one language. However, today, a lan­
guage model can involve multiple languages. 

The basic unit of a language model is token. A token can be a character, a word, or a 
part of a word (like -tion), depending on the model.2 For example, GPT-4, a model 
behind ChatGPT, breaks the phrase "I can't wait to build AI applications" into nine 
tokens, as shown in Figure 1-1. Note that in this example, the word "can't" is broken 
into two tokens, can and 't. You can see how different OpenAI models tokenize text 
on the OpenAI website (https://oreil.ly!0QI91). 

Figure 1-1. An example of how GPT-4 tokenizes a phrase. 

The process of breaking the original text into tokens is called tokenization. For 
GPT-4, an average token is approximately ¾ the length of a word (https:l/oreil.lyl 
EYccr). So, 100 tokens are approximately 75 words. 

The set of all tokens a model can work with is the model's vocabulary. You can use a 
small number of tokens to construct a large number of distinct words, similar to how 
you can use a few letters in the alphabet to construct many words. The Mixtral 8x7B 
(https://oreil.ly!bxMcW) model has a vocabulary size of 32,000. GPT-4's vocabulary 
size is 100,256 (https://github.com/openai/tiktoken/blob!main/tiktoken/model.py). The 
tokenization method and vocabulary size are decided by model developers. 

2 For non-English languages, a single Unicode character can sometimes be represented as multiple tokens. 
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Why do language models use token as their unit instead of word or 
character? There are three main reasons: 

1. Compared to characters, tokens allow the model to break 
words into meaningful components. For example, "cooking" 
can be broken into "cook" and "ing", with both components 
carrying some meaning of the original word. 

2. Because there are fewer unique tokens than unique words, this 
reduces the model's vocabulary size, making the model more 
efficient ( as discussed in Chapter 2). 

3. Tokens also help the model process unknown words. For 
instance, a made-up word like "chatgpting" could be split into 
"chatgpt" and "ing", helping the model understand its struc­
ture. Tokens balance having fewer units than words while 
retaining more meaning than individual characters. 

There are two main types of language models: masked language models and autore­
gressive language models. They differ based on what information they can use to pre­
dict a token: 

Masked language model 
A masked language model is trained to predict missing tokens anywhere in a 
sequence, using the contextfrom both before and after the missing tokens. In 
essence, a masked language model is trained to be able to fill in the blank. For 
example, given the context, "My favorite_ is blue", a masked language model 
should predict that the blank is likely "color". A well-known example of a 
masked language model is bidirectional encoder representations from transform­
ers, or BERT (Devlin et al., 2018 (https://arxiv.org/abs/1810.04805)). 

As of writing, masked language models are commonly used for non-generative 
tasks such as sentiment analysis and text classification. They are also useful for 
tasks requiring an understanding of the overall context, such as code debugging, 
where a model needs to understand both the preceding and following code to 
identify errors. 

Autoregressi11e language model 
An autoregressive language model is trained to predict the next token in a 
sequence, using only the preceding tokens. It predicts what comes next in "My 
favorite color is _." 3 An autoregressive model can continually generate one 
token after another. Today, autoregressive language models are the models of 

3 Autoregressive language models are sometimes referred to as causal language models (https:l!oreil.ly!h0Y8x). 
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choice for text generation, and for this reason, they are much more popular than 
masked language models. 4 

Figure 1-2 shows these two types of language models. 

Autoregressive LM Why does the chicken cross the 

Masked LM 

, ......... ·····-···~ t 
: Context ~ 
: (previous tokens only} ; .......... ~ ...................... .. 

Why does the cross the road 

······-·.t········ . . 
: Context : 
: (surrounding tokens) • ...... -..... -. -. -..... • 

Figure 1-2. Autoregressive language model and masked language model. 

In this book, unless explicitly stated, language model will refer to an 
autoregressive model. 

The outputs oflanguage models are open-ended. A language model can use its fixed, 
finite vocabulary to construct infinite possible outputs. A model that can generate 
open-ended outputs is called generative, hence the term generative AI. 

You can think of a language model as a completion machine: given a text (prompt), it 
tries to complete that text. Here's an example: 

Prompt (from user): "To be or not to be" 

Completion (from language model): ", that ls the ques tlon." 

It's important to note that completions are predictions, based on probabilities, and 
not guaranteed to be correct. This probabilistic nature of language models makes 
them both so exciting and frustrating to use. We explore this further in Chapter 2. 

4 Technically, a masked language model like BERT can also be used for text generations if you try really hard. 
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As simple as it sounds, completion is incredibly powerful. Many tasks, including 
translation, summarization, coding, and solving math problems, can be framed as 
completion tasks. For example, given the prompt: "How are you in French is ... ", a 
language model might be able to complete it with: "Comment <;:a va", effectively 
translating from one language to another. 

As another example, given the prompt: 

Question: Is thts eMall llkely spa~? Here's the eMall: <eMall content> 

Answer: 

A language model might be able to complete it with: "Likely spam", which turns this 
language model into a spam classifier. 

While completion is powerful, completion isn't the same as engaging in a conversa­
tion. For example, if you ask a completion machine a question, it can complete what 
you said by adding another question instead of answering the question. "Post­
Training" on page 78 discusses how to make a model respond appropriately to a user's 
request. 

Self-supervision 
Language modeling is just one of many ML algorithms. There are also models for 
object detection, topic modeling, recommender systems, weather forecasting, stock 
price prediction, etc. What's special about language models that made them the cen­
ter of the scaling approach that caused the ChatGPT moment? 

The answer is that language models can be trained using self-supervision, while many 
other models require supervision. Supervision refers to the process of training ML 
algorithms using labeled data, which can be expensive and slow to obtain. Self­
supervision helps overcome this data labeling bottleneck to create larger datasets for 
models to learn from, effectively allowing models to scale up. Here's how. 

With supervision, you label examples to show the behaviors you want the model to 
learn, and then train the model on these examples. Once trained, the model can be 
applied to new data. For example, to train a fraud detection model, you use examples 
of transactions, each labeled with "fraud" or "not fraud". Once the model learns from 
these examples, you can use this model to predict whether a transaction is fraudulent. 

The success of AI models in the 2010s lay in supervision. The model that started the 
deep learning revolution, AlexNet (Krizhevsky et al., 2012 (https://oreil.ly/WEQFj)), 
was supervised. It was trained to learn how to classify over I million images in the 
dataset lmageNet. It classified each image into one of 1,000 categories such as "car", 
"balloon", or "monkey". 
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A drawback of supervision is that data labeling is expensive and time-consuming. If it 
costs 5 cents for one person to label one image, it'd cost $50,000 to label a million 
images for ImageNet.5 If you want two different people to label each image-so that 
you could cross-check label quality-it'd cost twice as much. Because the world con­
tains vastly more than 1,000 objects, to expand models' capabilities to work with 
more objects, you'd need to add labels of more categories. To scale up to 1 million 
categories, the labeling cost alone would increase to $50 million. 

Labeling everyday objects is something that most people can do without prior train­
ing. Hence, iL can be done relatively cheaply. However, not all labeling tasks are that 
simple. Generating Latin translations for an English-to-Latin model is more expen­
sive. Labeling whether a CT scan shows signs of cancer would be astronomical. 

Self-supervision helps overcome the data labeling bottleneck. In self-supervision, 
instead of requiring explicit labels, the model can infer labels from the input data. 
Language modeling is self-supervised because each input sequence provides both the 
labels (tokens to be predicted) and the contexts the model can use to predict these 
labels. For example, the sentence "I love street food." gives six training samples, as 
shown in Table 1-1. 

Table 1-1. Training samples from the sentence "I love street food." for language modeling. 

Input (context) Output (next token) 

<805> I 

<BOS>, I love 

<BOS>, I, love street 

<BOS>, I, love, street food 

<BOS>, I, love, street, food 

<BOS>, I, love, street, food, <EOS> 

In Table 1-1, <BOS> and <EOS> mark the beginning and the end of a sequence. 
These markers are necessary for a language model to work with multiple sequences. 
Each marker is typically treated as one special token by the model. The end-of­
sequence marker is especially important as it helps language models know when to 
end their responses.6 

5 The actual data labeling cost varies depending on several factors, including the task's complexity, the scale 
(larger datasets typically result in lower per-sample costs), and the labeling service provider. For example, as 
of September 2024, Amazon SageMaker Ground Truth (https://oreil.ly!EVXJI} charges 8 cents per iinage for 
labeling fewer than 50,000 iinages, but only 2 cents per image for labeling more than I million images. 

6 This is similar to how it's important for huma11s to know when to stop talking. 
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Self-supervision differs from unsupervlSlon. In self-supervised 
learning, labels are inferred from the input data. In unsupervised 
learning, you don't need labels at all. 

Self-supervised learning means that language models can learn from text sequences 
without requiring any labeling. Because text sequences are everywhere-in books, 
blog posts, articles, and Reddit comments-it's possible to construct a massive 
amount of training data, allowing language models to scale up to become LLMs. 

LLM, however, is hardly a scientific term. How large does a language model have to 
be to be considered large? What is large today might be considered tiny tomorrow. A 
model's size is typically measured by its number of parameters. A parameter is a vari­
able within an ML model that is updated through the training process.7 In general, 
though this is not always true, the more parameters a model has, the greater its 
capacity to learn desired behaviors. 

When OpenAI's first generative pre-trained transformer (GPT) model came out in 
June 2018, it had 117 million parameters, and that was considered large. In February 
2019, when OpenAI introduced GPT-2 with 1.5 billion parameters, 117 million was 
downgraded to be considered small. As of the writing of this book, a model with 100 
billion parameters is considered large. Perhaps one day, this size will be considered 
small. 

Before we move on to the next section, I want to touch on a question that is usually 
taken for granted: Why do larger models need more data? Larger models have more 
capacity to learn, and, therefore, would need more training data to maximize their 
performance. 8 You can train a large model on a small dataset too, but it'd be a waste 
of compute. You could have achieved similar or better results on this dataset with 
smaller models. 

From Large Language Models to Foundation Models 
While language models are capable of incredible tasks, they are limited to text. As 
humans, we perceive the world not just via language but also through vision, hearing, 
touch, and more. Being able to process data beyond text is essential for AI to operate 
in the real world. 

7 In school, I was taught that model parameters include both model weights and model biases. However, today, 
we generally use model weights to refer to all parameters. 

8 It seems counterintuitive that larger models require more training data. If a model is more powerful, 
shouldn't it require fewer examples to learn from? However, we're not trying to get a large model to match 
the performance of a small model using the same data. We're trying to maximize model performance. 
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For this reason, language models are being extended to incorporate more data 
modalities. GPT-4V and Claude 3 can understand images and texts. Some models 
even understand videos, 3D assets, protein structures, and so on. Incorporating more 
data modalities into language models makes them even more powerful. OpenAI 
noted in their GPT-4V system card (https:!/oreil.ly!NoGX1) in 2023 that "incorporat­
ing additional modalities (such as image inputs) into LLMs is viewed by some as a 
key frontier in AI research and development." 

While many people still call Gemini and GPT-4V LLMs, they're better characterized 
as foundation models (https:/1 arxiv. org/ abs/2108.07258). The word foundation signi­
fies both the importance of these models in AI applications and the fact that they can 
be built upon for different needs. 

Foundation models mark a breakthrough from the traditional structure of AI 
research. For a long time, AI research was divided by data modalities. Natural lan­
guage processing (NLP) deals only with text. Computer vision deals only with vision. 
Text-only models can be used for tasks such as translation and spam detection. 
Image-only models can be used for object detection and image classification. Audio­
only models can handle speech recognition (speech-to-text, or STT) and speech syn­
thesis (text-to-speech, or TTS). 

A model that can work with more than one data modality is also called a multimodal 
model. A generative multimodal model is also called a large multimodal model 
(LMM). If a language model generates the next token conditioned on text-only 
tokens, a multimodal model generates the next token conditioned on both text and 
image tokens, or whichever modalities that the model supports, as shown in 
Figure 1-3. 

Text tokens 

Thi.s i.s a 

Visual tokens 

Multimodal 
model 

Next token 

Puppy 

Figure 1-3. A multimodal model can generate the next token using information from 
both text and visual tokens. 
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Just like language models, multimodal models need data to scale up. Self-supervision 
works for multimodal models too. For example, OpenAI used a variant of self­
supervision called natural language supervision to train their language-image model 
CLIP (OpenAI, 2021) (https://oreil.ly/zcqdu). Instead of manually generating labels 
for each image, they found (image, text) pairs that co-occurred on the internet. They 
were able to generate a dataset of 400 million (image, text) pairs, which was 400 times 
larger than ImageNet, without manual labeling cost. This dataset enabled CLIP to 
become the first model that could generalize to multiple image classification tasks 
without requiring additional training. 

~ This book uses the term foundation models to refer to both large 
~ language mod,!, ,nd luge multimod,l model,. 

Note that CLIP isn't a generative model-it wasn't trained to generate open-ended 
outputs. CLIP is an embedding model, trained to produce joint embeddings of both 
texts and images. "Introduction to Embedding" on page 134 discusses embeddings in 
detail. For now, you can think of embeddings as vectors that aim to capture the 
meanings of the original data. Multimodal embedding models like CLIP are the back­
bones of generative multimodal models, such as Flamingo, LLa VA, and Gemini (pre­
viously Bard). 

Foundation models also mark the transition from task-specific models to general­
purpose models. Previously, models were often developed for specific tasks, such as 
sentiment analysis or translation. A model trained for sentiment analysis wouldn't be 
able to do translation, and vice versa. 

Foundation models, thanks to their scale and the way they are trained, are capable of a 
wide range of tasks. Out of the box, general-purpose models can work relatively well 
for many tasks. An LLM can do both sentiment analysis and translation. However, 
you can often tweak a general-purpose model to maximize its performance on a spe­
cific task. 

Figure 1-4 shows the tasks usecl by the Super-Naturallnstructions benchmark to eval­
uate foundation models (Wang et al., 2022 (https:l/arxiv.org/abs/2204.O7705)), pro­
viding an idea of the types of tasks a foundation model can perform. 

Imagine you're working with a retailer to build an application to generate product 
descriptions for their website. An out-of-the-box model might be able to generate 
accurate descriptions but might fail to capture the brand's voice or highlight the 
brand's messaging. The generated descriptions might even be full of marketing 
speech and cliches. 
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Figure 1-4. The range of tasks in the Super-Natura/Instructions benchmark (Wang et 
al., 2022). 

There are multiple techniques you can use to get the model to generate what you 
want. For example, you can craft detailed instructions with examples of the desirable 
product descriptions. This approach is prompt engineering. You can connect the 
model to a database of customer reviews that the model can leverage to generate bet­
ter descriptions. Using a database to supplement the instructions is called retrieval­
augmented generation (RAG). You can also finetune-further train-the model on a 
dataset of high-quality product descriptions. 

Prompt engineering, RAG, and finetuning are three very common AI engineering 
techniques that you can use to adapt a model to your needs. The rest of the book will 
discuss all of them in detail. 
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Adapting an existing powerful model to your task is generally a lot easier than build­
ing a model for your task from scratch-for example, ten examples and one weekend 
versus 1 million examples and six months. Foundation models make it cheaper to 
develop Al applications and reduce time to market. Exactly how much data is needed 
to adapt a model depends on what technique you use. This book will also touch on 
this question when discussing each technique. However, there are still many benefits 
to task-specific models, for example, they might be a lot smaller, making them faster 
and cheaper to use. 

Whether to build your own model or leverage an existing one is a classic huy-or­
build question that teams will have to answer for themselves. Discussions throughout 
the book can help with that decision. 

From Foundation Models to Al Engineering 
AI engineering refers to the process of building applications on top of foundation 
models. People have been building AI applications for over a decade-a process often 
known as ML engineering or MLOps (short for ML operations). Why do we talk 
about AI engineering now? 

If traditional ML engineering involves developing ML models, AI engineering lever­
ages existing ones. The availability and accessibility of powerful foundation models 
lead to three factors that, together, create ideal conditions for the rapid growth of AI 
engineering as a discipline: 

Factor 1: General-purpose AI capabilities 
Foundation models are powerful not just because they can do existing tasks bet­
ter. They are also powerful because they can do more tasks. Applications previ­
ously thought impossible are now possible, and applications not thought of 
before are emerging. Even applications not thought possible today might be pos­
sible tomorrow. This makes AI more useful for more aspects of life, vastly 
increasing both the user base and the demand for AI applications. 

For example, since AI can now write as well as humans, sometimes even better, 
AI can automate or partially automate every task that requires communication, 
which is pretty much everything. AI is used to write emails, respond to customer 
requests, and explain complex contracts. Anyone with a computer has access to 
tools that can instantly generate customized, high-quality images and videos to 
help create marketing materials, edit professional headshots, visualize art con­
cepts, illustrate books, and so on. AI can even be used to synthesize training data, 
develop algorithms, and write code, all of which will help train even more power­
ful models in the future. 
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Factor 2: Increased AI investments 
The success of ChatGPT prompted a sharp increase in investments in AI, both 
from venture capitalists and enterprises. As AI applications become cheaper to 
build and faster to go to market, returns on investment for AI become more 
attractive. Companies rush to incorporate AI into their products and processes. 
Matt Ross, a senior manager of applied research at Scribd, told me that the esti­
mated AI cost for his use cases has gone down two orders of magnitude from 
April 2022 to April 2023. 

Goldman Sachs Research (https://oreil.ly/okMw6) estimated that AI investment 
could approach $100 billion in the US and $200 billion globally by 2025.9 AI is 
often mentioned as a competitive advantage. FactSet (https://oreil.ly!tgm-a) 
found that one in three S&P 500 companies mentioned AI in their earnings calls 
for the second quarter of 2023, three times more than did so the year earlier. 
Figure 1-5 shows the number of S&P 500 companies that mentioned Al in their 
earning calls from 2018 to 2023. 
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Figure 1-5. The number of S&P 500 companies that mention AI in their earnings 
calls reached a record high in 2023. Data from FactSet. 

9 Por comparison, the entire US e.xpenditures for public elementary and secondary schools are around $900 
billion, only nine times the investments in AI in the US, 
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According to WallStreetZen, companies that mentioned AI in their earning calls 
saw their stock price increase more than those that didn't: an average of a 4.6% 
increase.compared to 2.4% (https://oreil.ly/fK5uh). It's unclear whether it's causa­
tion (AI malces these companies more successful) or correlation (companies are 
successful because they are quick to adapt to new technologies). 

Factor 3: Low entrance barrier to building AI applications 
The model as a service approach popularized by OpenAI and other model pro­
viders makes it easier to leverage AI to build applications. In this approach, mod­
els are exposed via APis that receive user queries and return model outputs. 
Without these APis, using an AI model requires the infrastructure to host and 
serve this model. These APis give you access to powerful models via single API 
calls. 

Not only that, AI also makes it possible to build applications with minimal cod­
ing. First, AI can write code for you, allowing people without a software engi­
neering background to quickly turn their ideas into code and put them in front 
of their users. Second, you can work with these models in plain English instead of 
having to use a programming language. Anyone, and I mean anyone, can now 
develop AI applications. 

Because of the resources it takes to develop foundation models, this process is possi­
ble only for big corporations (Google, Meta, Microsoft, Baidu, Tencent), govern­
ments (Japan (https://oreil.ly!r86Qz), the UAE (https://oreil.ly/IUcVg)), and 
ambitious, well-funded startups (OpenAI, Anthropic, Mistral). In a September 2022 
interview, Sam Altman, CEO of OpenAI (https:!/oreil.ly!D9QBM), said that the big­
gest opportunity for the vast majority of people will be to adapt these models for spe­
cific applications. 

The world is quick to embrace this opportunity. AI engineering has rapidly emerged 
as one of the fastest, and quite possibly the fastest-growing, engineering discipline. 
Tools for AI engineering are gaining traction faster than any previous software engi­
neering tools. Within just two years, four open source AI engineering tools 
(AutoGPT, Stable Diffusion eb Ul, LangChain, Ollama) have already garnered more 
stars on GitHub than Bitcoin. They are on track to surpass even the most popular 
web development frameworks, including React and Vue, in star count. Figure 1-6 

shows the GitHub star growth of AI engineering tools compared to Bitcoin, Vue, and 
React. 

A Linkedln survey from August 2023 shows that the number of professionals adding 
terms lilce "Generative AI," "ChatGPT," "Prompt Engineering," and "Prompt Craft­
ing" to their profile increased on average 75% each month (https://oreil.lylm8SvB). 
ComputerWorld (https://oreil.ly/47sGE) declared that "teaching AI to behave is the 
fastest-growing career skill". 

14 I Chapter 1: Introduction to Building Al Applications with Foundation Models 



d AI in their earning calls 
in't: an average of a 4.6% 
mclear whether it's causa­
orrelation ( companies are 
ologies). 

tAI and other model pro-
1s. In this approach, mod­
id return model outputs. 
nfrastructure to host and 
ful models via single API 

ations with minimal cod­
without a software engi­
,de and put them in front 
in plain English instead of 
I mean anyone, can now 

dels, this process is possi­
Baidu, Tencent), govern-
1s:/!oreil.ly/IUcVg)), and 
ral). In a September 2022 
~QBM), said that the big­
lapt these models for spe-

~ring has rapidly emerged 
g, engineering discipline. 
.y previous software engi­
:e AI engineering tools 
ve already garnered more 
,s even the most popular 
in star count. Figure 1-6 
•ared to Bitcoin, Vue, and 

~r of professionals adding 
ing," and "Prompt Craft­
li (https://oreil.ly!m8SvB). 
hing AI to behave is the 

200.SK 

150.SK 
I!! 
,u 
t;; 
..::, 
::J :c 
(] 100.SK 

50.51< 

Mil e significant-gravitas/AutoGPT 
.,. langchain-ai/langchain 
r.i ollama/ollama 

Star history 

"" i AUTOMATIClll/stable-diffusion-webui 
¥ vue.js/vue 

m '"· facebook/react 
ill O bitcoin/bitcoin 

2012 2014 2016 2018 

Date 
2020 2022 2024 

star-history com 

Figure 1-6. Open source AI engineering tools are growing/aster than any other software 
engineering tools, according to their GitHub star counts. 

Why the Term "Al Engineering?" 
Many terms are being used to describe the process of building applications on top of 
foundation models, including ML engineering, MLOps, AIOps, LLMOps, etc. Why 
did I choose to go with AI engineering for this book? 

I didn't go with the term ML engineering because, as discussed in "AI Engineering 
Versus ML Engineering" on page 39, working with foundation models differs from 
working with traditional ML models in several important aspects. The term ML engi­
neering won't be sufficient to capture this differentiation. However, ML engineering 
is a great term to encompass both processes. 

I didn't go with all the terms that end with "Ops" because, while there are operational 
components of the process, the focus is more on tweaking (engineering) foundation 
models to do what you want. 

Finally, I surveyed 20 people who were developing applications on top of foundation 
models about what term they would use to describe what they were doing. Most peo­
ple preferred AI engineering. l decided to go with the people. 
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The rapidly expanding community of AI engineers has demonstrated remarkable 
creativity with an incredible range of exciting applications. The next section will 
explore some of the most common application patterns. 

Foundation Model Use Cases 
If you're not already building AI applications, I hope the previous section has con­
vinced you that now is a great time to do so. If you have an application in mind, you 
might want to jump to "Planning AI Applications" on page 28. If you're looking for 
inspiration, this section covers a wide range of industry-proven and promising use 
cases. 

The number of potential applications that you could build with foundation models 
seems endless. Whatever use case you think of, there's probably an AI for that.10 It's 
impossible to list all potential use cases for AL 

Even attempting to categorize these use cases is challenging, as different surveys use 
different categorizations. For example, Amazon Web Services (A WS) (https:// 
oreil.ly!-k_QX) has categorized enterprise generative AI use cases into three buckets: 
customer experience, employee productivity, and process optimization. A 2024 
O'Reilly survey categorized the use cases into eight categories: programming, data 
analysis, customer support, marketing copy, other copy, research, web design, and 
art. 

Some organizations, like Deloitte (https://oreil.ly/T272_), have categorized use cases 
by value capture, such as cost reduction, process efficiency, growth, and accelerating 
innovation. For value capture, Gartner (https://oreil.ly!OyIUP) has a category for 
business continuity, meaning an organization might go out of business if it doesn't 
adopt generative Al. Of the 2,500 executives Gartner surveyed in 2023, 7% cited busi­
ness continuity as the motivation for embracing generative AL 

10 Fun fact: as of September 16, 2024, the website theresanaiforthat.com lists 16,814 Als for 14,688 tasks and 
4,803 jobs. 
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Eloundou et al. (2023) (https://arxiv.orglabs/2303.10130) has excellent research on 
how exposed different occupations are to AL They defined a task as exposed if AI and 
AI-powered software can reduce the time needed to complete this task by at least 
50%. An occupation with 80% exposure means that 80% of the occupation's tasks are 
exposed. According to the study, occupations with 100% or close to 100% exposure 
include interpreters and translators, tax preparers, web designers, and writers. Some 
of them are shown in Table 1-2. Not unsurprisingly, occupations with no exposure to 
AI include cooks, stonemasons, and athletes. This study gives a good idea of what use 
cases AI is good for. 

Table 1-2. Occupations with the highest exposure to Al as annotated by humans. a refers to 
exposure to AI models directly, whereas f3 and ( refer to exposures to AI-powered software. 
Table from Eloundou et al. (2023). 

Group Occupations with highest exposure % Exposure 

Human a Interpreters and translators 76.5 
Survey researchers 75.0 
Poets, lyricists, and creative writers 68.8 
Animal scientists 66.7 
Public relations specialists 66.7 

Humanµ Survey researchers 84.4 
Writers and authors 82.5 
Interpreters and translators 82.4 
Public relations specialists 80.6 
Animal scientists 77.8 

Human ( Mathematicians 100.0 
Tax preparers 100.0 
financial quantitative analysts 100.0 
Writers and authors 100.0 
Web and digital interface designers 100.0 
Humo~s labeled 15 occupations as "fully exposed''. 
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When analyzing the use cases, I looked at both enterprise and consumer applications. 
To understand enterprise use cases, I interviewed 50 companies on their AI strategies 
and read over 100 case studies. To understand consumer applications, I examined 
205 open source AI applications with at least 500 stars on GitHub.H I categorized 
applications into eight groups, as shown in Table 1-3. The limited list here serves best 
as a reference. As you learn more about how to build foundation models in Chapter 2 
and how to evaluate them in Chapter 3, you'll also be able to form a better picture of i • 
what use cases foundation models can and should be used for. 

Table 1-3. Common generative AI use cases across consumer and enterprise applications. 

Category Examples of consumer use cases Examples of enterprise use cases 

Coding Coding Coding 

Image and video Photo and video editing Presentation 
production Deskjn Ad generation 

Writing Email Copywriting, search engine optimization (SEO) 
Social media and blog posts Reports, memos, design docs 

Education Tutoring Employee onboarding 
Essay grading Employee upskill training 

Conversational bots General chatbot Customer support 
Al companion Product copilots 

Information aggregation Summarization Summarization 
Talk-to-your-docs Market research 

Data organization Image search Knowledge management 
Memex Document processing 

Workflow automation Travel planning Data extraction, entry, and annotation 
Event planning Lead generation 

Because foundation models are general, applications built on top of them can solve 
many problems. This means that an application can belong to more than one cate­
gory. For example, a bot can provide companionship and aggregate information. An 
application can help you extract structured data from a PDF and answer questions 
about that PDF. 

Figure 1-7 shows the distribution of these use cases among the 205 open source appli­
cations. Note that the small percentage of education, data organization, and writing 
use cases doesn't mean that these use cases aren't popular. It just means that these 
applications aren't open source. Builders of these applications might find them more 
suitable for enterprise use cases. 

11 Exploring different AI applications is perhaps one of my favorite things about writing this book. It's a lot of 
fun seeing what people are building. You can find the list of open source AI applications (https://huyen 
chip.com/llama-po/ice) that I track. The list is updated every 12 hours. 
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Conversational bots (26.5%) 

Figure 1-7. Distribution of use cases in the 205 open source repositories on GitHub. 

The enterprise world generally prefers applications with lower risks. For example, a 
2024 a16z Growth report (https://oreil.ly!XWeDt) showed that companies are faster 
to deploy internal-facing applications (internal knowledge management) than 
external-facing applications (customer support chatbots), as shown in Figure 1-8. 
Internal applications help companies develop their AI engineering expertise while 
minimizing the risks associated with data privacy, compliance, and potential cata­
strophic failures. Similarly, while foundation models are open-ended and can be used 
for any task, many applications built on top of them are still dose-ended, such as 
classification. Classification tasks are easier to evaluate, which makes their risks easier 
to estimate. 

How willing are enterprises to use LLMs for different use cases? 
(% of enterprises experimenting with given use case who have deployed to production) 

Text Enterprise 
summarization knowledge 

management 

Internal-facing 

59% 

Customer 
service 

53% 53% 

Marketing Software 
copy development 

45% 
39% 39% - -Contract External Recommendation 

review chatbox algorithm 

External-facing 

Figure 1-8. Companies are more willing to deploy internal-facing applications 
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Even after seeing hundreds of AI applications, I still find new applications that sur­
prise me every week. In the early days of the internet, few people foresaw that the 
dominating use case on the internet one day would be social media. As we learn to 
make the most out of AI, the use case that will eventually dominate might surprise us. 
With luck, the surprise will be a good one. 

Coding 
In multiple generative AI surveys, coding is hands down the most popular use case. 
AI coding tools are popular both because AI is good at coding and because early AI 
engineers are coders who are more exposed to coding challenges. 

One of the earliest successes of foundation models in production is the code comple­
tion tool GitHub Copilot, whose annual recurring revenue crossed $100 million 
(https://oreil.ly/Xamik) only two years after its launch. As of this writing, AI-powered 
coding startups have raised hundreds of millions of dollars, with Magic raising $320 
million (https://oreil.lyltOxDf) and Anysphere raising $60 million (https://oreil.ly! 
BWSHk), both in August 2024. Open source coding tools like gpt-engineer (https:/1 
github.com/gpt-engineer-orglgpt-engineer} and screenshot-to-code (https:/1 
github.com!abi/screenshot-to-code) both got 50,000 stars on GitHub within a year, 
and many more are being rapidly introduced. 

Other than tools that help with general coding, many tools specialize in certain cod­
ing tasks. Here are examples of these tasks: 

• Extracting structured data from web pages and PDFs (AgentGPT (https:/1 
github. com/reworkd! AgentGPT)) 

• Converting English to code (DB-GPT (https://github.com/eosphoros-ai!DB-GPT), 
SQL Chat (https;//github.com/sqlchat!sqlchat), PandasAI (https://github.com/ 
Sinaptik-AI!pandas-ai)) 

• Given a design or a screenshot, generating code that will render into a website 
that looks like the given image (screenshot-to-code, draw-a-ui (https:// 
github.com/sawyerhood!draw-a-ui)) 

• Translating from one programming language or framework to another (GPT­
Migrate (https:l/github.com/joshpxynelgpt-migrate), AI Code Translator (https:/1 
github.com/mckaywrigleyl ai-code-translator)) 

• Writing documentation (Autodoc (https://github.com!context-labs/autodoc)) 

• Creating tests (PentestGPT (https://github.com/GreyDGL/PentestGPT)) 

• Generating commit messages (AI Commits (https:l!github.com/Nutlope/aicom 
mits)) 
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clear that AI can do many software engineering tasks. The question is whether Al 
automate software engineering altogether. At one end of the spectrum, Jensen 

Huang, CEO of NVIDIA (https://oreil.ly!zUpGu), predicts that AI will replace human 
software engineers and that we should stop saying kids should learn to code. In a 
leaked recording, AWS CEO Matt Garman (https://oreil.ly/Hz_3i) shared that in the 
near future, most developers will stop coding. He doesn't mean it as the end of soft­
ware developers; it's just that their jobs will change. 

At the other end are many software engineers who are convinced that they will never 
be replaced by AI, both for technical and emotional reasons (people don't like admit­
ting that they can be replaced). 

Software engineering consists of many tasks. AI is better at some than others. McK.in­
sey (https://oreil.ly/aqUmX) researchers found that AI can help developers be twice as 
productive for documentation, and 25-50% more productive for code generation and 
code refactoring. Minimal productivity improvement was observed for highly com­
plex tasks, as shown in Figure 1-9. In my conversations with developers of AI coding 
tools, many told me that they've noticed that AI is much better at frontend develop­
ment than backend development. 

Average time reduction in task completion time using generative Al 100-,------::..._ ________ __;_ _____ .=....= ______ ~ 

80 

~ 60 
C: 
._g 
V 45-50% ::, 

"O 
~ 
<1) 

E 40 
F 

20 

<10% 

0 
Code documentation Code generation Code refactoring High-complexity tasks 

Task categories 

Figure 1-9. Al can help developers be significantly more productive, especially for sim­
ple tasks, but this applies less for highly complex tasks. Data by McKinsey. 

Foundation Model Use Cases I 21 



Regardless of whether AI will replace software engineers, AI can certainly make them 
more productive. This means that companies can now accomplish more with fewer 
engineers. AI can also disrupt the outsourcing industry, as outsourced tasks tend to 
be simpler ones outside of a company's core business. 

Image and Video Production 
Thanks to its probabilistic nature, AI is great for creative tasks. Some of the most suc­
cessful AI startups are creative applications, such as Midjourney for image genera­
tion, Adobe Firefly for photo editing, and Runway, Pika Labs, and Sora for video 
generation. In late 2023, at one and a half years old, Midjourney (https:!!oreil.ly! 
EAzCl) had already generated $200 million in annual recurring revenue. As of 
December 2023, among the top 10 free apps for Graphics & Design on the Apple App 
Store, half have AI in their names. I suspect that soon, graphics and design apps will 
incorporate AI by default, and they'll no longer need the word "AI" in their names. 
Chapter 2 discusses the probabilistic nature of AI in more detail. 

It's now common to use Al to generate profile pictures for social media, from 
Linkedin to TikTok. Many candidates believe that AI-generated headshots can help 
them put their best foot forward and increase their chances oflanding a job (https:/1 
oreil.ly!JZLVg). The perception of Al-generated profile pictures has changed signifi­
cantly. In 2019, Facebook (https:!!oreil.ly!WNqUw) banned accounts using AI­
generated profile photos for safety reasons. In 2023, many social media apps provide 
tools that let users use AI to generate profile photos. 

For enterprises, ads and marketing have been quick to incorporate AL 12 AI can be 
used to generate promotional images and videos directly. It can help brainstorm 
ideas or generate first drafts for human experts to iterate upon. You can use AI to 
generate multiple ads and test to see which one works the best for the audience. AI 
can generate variations of your ads according to seasons and locations. For example, 
you can use AI to change leaf colors during fall or add snow to the ground during 
winter. 

Writing 
AI has long been used to aid writing. If you use a smartphone, you're probably famil­
iar with autocorrect and auto-completion, both powered by AI. Writing is an ideal 
application for AI because we do it a lot, it can be quite tedious, and we have a high 
tolerance for mistakes. If a model suggests something that you don't like, you can just 
ignore it. 

12 Because enterprises usually spend a lot of money on ads and marketing, automation there can lead to huge 
savings. On average, 11 % of a company's budget is spent on marketing. See "Marketing Budgets Vary by 
Industry" (https:l/oreil.ly!DO-yA) (Christine Moorman, WSJ, 2017). 
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It's not a surprise that LLMs are good at writing, given that they are trained for text 
completion. To study the impact of ChatGPT on writing, an MIT study (Noy and 
Zhang, 2023 (https://oreil.ly/IzQ6F)) assigned occupation-specific writing tasks to 453 
college-educated professionals and randomly exposed half of them to ChatGPT. 
Their results show that among those exposed to ChatGPT, the average time taken 
decreased by 40% and output quality rose by 18%. ChatGPT helps close the gap in 
output quality between workers, which means that it's more helpful to those with less 
inclination for writing. Workers exposed to ChatGPT during the experiment were 2 
times as likely to report using it in their real job two weeks after the experiment and 
1.6 times as likely two months after that. 

For consumers, the use cases are obvious. Many use AI to help them communicate 
better. You can be angry in an email and ask AI to make it pleasant. You can give it 
bullet points and get back complete paragraphs. Several people claimed they no 
longer send an important email without asking AI to improve it first . 

Students are using AI to write essays. Writers are using AI to write books.13 Many 
startups already use AI to generate children's, fan fiction, romance, and fantasy 
books. Unlike traditional books, AI-generated books can be interactive, as a book's 
plot can change depending on a reader's preference. This means that readers can 
actively participate in creating the story they are reading. A children's reading app 
identifies the words that a child has trouble with and generates stories centered 
around these words. 

Note-taking and email apps like Google Docs, Notion, and Gmail all use AI to help 
users improve their writing. Grammarly (https://arxiv.org!abs/2305.09857), a writing 
assistant app, finetunes a model to make users' writing more fluent, coherent, and 
clear. 

Al's ability to write can also be abused. In 2023, the New York Times (https://oreil.ly! 
LB72P) reported that Amazon was flooded with shoddy AI-generated travel guide­
books, each outfitted with an author bio, a website, and rave reviews, all AI­
generated. 

For enterprises, AI writing is common in sales, marketing, and general team commu­
nication. Many managers told me they've been using AI to help them write perfor­
mance reports. AI can help craft effective cold outreach emails, ad copywriting, and 
product descriptions. Customer relationship management (CRM) apps like HubSpot 
and Salesforce also have tools for enterprise users to generate web content and out­
reach emails. 

13 I have found AI very helpful in the process of writing this book, and I can see that AI will be able to automate 
many parts of the writing process. When writing fiction, I often ask AI to brainstorm ideas on what it thinks 
will happen next or how a character might react to a situation. I'm still evaluating what kind of writing can be 
automated and what kind of writing can't be. 
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AI seems particularly good with SEO, perhaps because many AI models are trained 
with data from the internet, which is populated with SEO-optimized text. AI is so 
good at SEO that it has enabled a new generation of content farms. These farms set 
up junk websites and fill them with AI-generated content to get them to rank high on 
Google to drive traffic to them. Then they sell advertising spots through ad 
exchanges. In June 2023, NewsGuard (https://oreil.ly/mZKjr) identified almost 400 
ads from 141 popular brands on junk AI-generated websites. One of those junk web­
sites produced 1,200 articles a day. Unless something is done to curtail this, the future 
of internet content will be AI-generated, and it'll be pretty bleak.14 

Education 
Whenever ChatGPT is down, OpenAI's Discord server is flooded with students com­
plaining about being unable to complete their homework. Several education boards, 
including the New York City Public Schools and the Los Angeles Unified School Dis­
trict, were quick to ban ChatGPT (https:l/oreil.lylpql5z) for fear of students using it 
for cheating, but reversed their decisions (https://oreil.ly!nxtzw) just a few months 
later. 

Instead of banning AI, schools could incorporate it to help students learn faster. AI 
can summarize textbooks and generate personalized lecture plans for each student. I 
find it strange that ads are personalized because we know everyone is different, but 
education is not. AI can help adapt the materials to the format best suited for each 
student. Auditory learners can ask AI to read the materials out loud. Students who 
love animals can use AI to adapt visualizations to feature more animals. Those who 
find it easier to read code than math equations can ask AI to translate math equations 
into code. 

AI is especially helpful for language learning, as you can ask AI to roleplay different 
practice scenarios. Pajak and Bicknell (Duolingo, 2022) (https:/loreil.ly/CBkm[) found 
that out of four stages of course creation, lesson personalization is the stage that can 
benefit the most from AI, as shown in Figure 1-10. 

14 My hypothesis is that we'll become so distrustful of content on the internet that we'll only read content gener­

ated by people or brands we trust. 
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Figure 1-10. AI can be used throughout all four stages of course creation at Duo lingo, 
but it's the most helpful in the personalization stage. Image from Pajak and Bicknell 
(Duolingo, 2022). 

Al can generate quizzes, both multiple-choice and open-ended, and evaluate the 
answers. AI can become a debate partner as it's much better at presenting different 
views on the same topic than the average human. For example, Khan Academy 
( https:!/ oreil.Iy!tC7-g) offers AI-powered (https:/ I oreil. ly! _NIJR) teaching assistants 
to students and course assistants to teachers. An innovative teaching method I've 
seen is that teachers assign AI-generated essays for students to find and correct 
mistakes. 

While many education companies embrace AI to build better products, many find 
their lunches taken by AI. For example, Chegg, a company that helps students with 
their homework, saw its share price plummet from $28 when ChatGPT launched in 
November 2022 to $2 in September 2024, as students have been turning to AI for 
help (https:!!oreil.ly!Y-hBW). 

If the risk is that AI can replace many skills, the opportunity is that AI can be used as 
a tutor to learn any skill. For many skills, AI can help someone get up to speed 
quickly and then continue learning on their own to become better than AI. 
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Conversational Bots 
Conversational bots are versatile. They can help us find information, e>..-plain con­
cepts, and brainstorm ideas. AI can be your companion and therapist. It can emulate 
personalities, letting you talk to a digital copy of anyone you like. Digital girlfriends 
and boyfriends have become weirdly popular in an incredibly short amount of time. 
Many are already spending more time talking to bots than to humans (see the discus­
sions here (https://oreil.lyldZbym) and here (https:/!oreil.ly!svWj8)). Some are wor­
ried that AI will ruin (https://oreil.ly/SNme7) dating (https:l!oreil.ly!Jbt4R). 

In research, people have also found that they can use a group of conversational bots 
to simulate a society, enabling them to conduct studies on social dynamics (Park et 
al., 2023 (https://arxiv.org/abs/2304.03442)). 

For enterprises, the most popular bots are customer support bots. They can help 
companies save costs while improving customer experience because they can respond 
to users sooner than human agents. AI can also be product copilots that guide cus­
tomers through painful and confusing tasks such as filing insurance claims, doing 
taxes, or looking up corporate policies. 

The success of ChatGPT prompted a wave of text-based conversational bots. How­
ever, text isn't the only interface for conversational agents. Voice assistants such as 
Google Assistant, Siri, and Alexa have been around for years.15 3D conversational 
bots are already common in games and gaining traction in retail and marketing. 

One use case of AI-powered 3D characters is smart NPCs, non-player characters (see 
NVIDIA's demos of Inworld (https://oreil.lylyn-DN) and Convai (https:/Joreil.ly! 
zAHwz)). 16 NPCs are essential for advancing the storyline of many games. Without 
Al, NPCs are typically scripted to do simple actions with a limited range of dialogues. 
AI can make these NPCs much smarter. Intelligent bots can change the dynamics of 
existing games like The Sims and Skyrim as well as enable new games never possible 
before. 

Information Aggregation 
Many people believe that our success depends on our ability to filter and digest useful 
information. However, keeping up with emails, Slack messages, and news can some­
times be overwhelming. Luckily, AI came to the rescue. AI has proven to be capable 
of aggregating information and summarizing it. According to Salesforce's 2023 

15 It surprises me how long it takes Apple and Amazon to incorporate generative AI advances into Siri and 
Alexa. A friend thinks it's because these companies might have higher bars for quality and compliance, and it 
takes longer to develop voice interfaces than chat interfaces. 

16 Disclaimer: I'm an advisor of Convai. 
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Generative AI Snapshot Research (https://oreil.ly/74soT), 74% of generative AI users 
use it to distill complex ideas and summarize information. 

For consumers, many applications can process your documents-contracts, disclo­
sures, papers-and let you retrieve information in a conversational manner. This use 
case is also called talk-to-your-docs. AI can help you summarize websites, research, 
and create reports on the topics of your choice. During the process of writing this 

• book, I found AI helpful for summarizing and comparing papers. 

Information aggregation and distillation are essential for enterprise operations. More 
efficient information aggregation and dissimilation can help an organization become 
leaner, as it reduces the burden on middle management. When Instacart (https:/1 
oreil.ly!QqS-g) launched an internal prompt marketplace, it discovered that one of 
the most popular prompt templates is "Fast Breakdown". This template asks AI to 
summarize meeting notes, emails, and Slack conversations with facts, open questions, 
and action items. These action items can then be automatically inserted into a project 
tracking tool and assigned to the right owners. 

AI can help you surface the critical information about your potential customers and 
run analyses on your competitors. 

The more information you gather, the more important it is to organize it. Informa­
tion aggregation goes hand in hand with data organization. 

Data Organization 
One thing certain about the future is that we'll continue producing more and more 
data. Smartphone users will continue taking photos and videos. Companies will con­
tinue to log everything about their products, employees, and customers. Billions of 
contracts are being created each year. Photos, videos, logs, and PDFs are all unstruc­
tured or semistructured data. It's essential to organize all this data in a way that can 
be searched later. 

Al can help with exactly that. AI can automatically generate text descriptions about 
images and videos, or help match text queries with visuals that match those queries. 
Services like Google Photos are already using AI to surface images that match search 
queries.17 Google Image Search goes a step further: if there's no existing image match­
ing users' needs, it can generate some. 

17 I currently have over 40,000 photos and videos in my Google Photos. Without AI, it'd be near impossible for 
me to search for the photos I want, when I want them. 
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AI is very good with data analysis. It can write programs to generate data visualiza­
tion, identify outliers, and make predictions like revenue forecasts.18 

Enterprises can use AI to extract structured information from unstructured data, 
which can be used to organize data and help search it. Simple use cases include auto­
matically extracting information from credit cards, driver's licenses, receipts, tickets, 
contact information from email footers, and so on. More complex use cases include 
extracting data from contracts, reports, charts, and more. It's estimated that the IDP, 
intelligent data processing, industry will reach $12.81 billion by 2030 (https://oreil.ly! 
vnDNK), growing 32.9% each year. 

Workflow Automation 
Ultimately, AI should automate as much as possible. For end users, automation can 
help with boring daily tasks like booking restaurants, requesting refunds, planning 
trips, and filling out forms. 

For enterprises, AI can automate repetitive tasks such as lead management, invoicing, 
reimbursements, managing customer requests, data entry, and so on. One especially 
exciting use case is using AI models to synthesize data, which can then be used to 
improve the models themselves. You can use AI to create labels for your data, loop­
ing in humans to improve the labels. We discuss data synthesis in Chapter 8. 

Access to external tools is required to accomplish many tasks. To book a restaurant, 
an application might need permission to open a search engine to look up the restau­
rant's number, use your phone to make calls, and add appointments to your calendar. 
Als that can plan and use tools are called agents. The level of interest around agents 
borders on obsession, but it's not entirely unwarranted. AI agents have the potential 
to make every person vastly more productive and generate vastly more economic 
value. Agents are a central topic in Chapter 6. 

It's been a lot of fun looking into different AI applications. One of my favorite things 
to daydream about is the different applications I can build. However, not all applica­
tions should be built. The next section discusses what we should consider before 
building an AI application. 

Planning Al Applications 
Given the seemingly limitless potential of AI, it's tempting to jump into building 
applications. If you just want to learn and have fun, jump right in. Building is one of 
the best ways to learn. In the early days of foundation models, several heads of AI 

18 Personally, I also find AI good at explaining data and graphs. When encountering a confusing graph with too 
much information, I ask ChatGPT to break it down for me. 
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if you're doing this for a living, it might be worthwhile to take a step back 
consider why you're building this and how you should go about it. It's easy to 

a cool demo with foundation models. It's hard to create a profitable product. 

Case Evaluation 
first question to ask is why you want to build this application. Like many busi­
decisions, building an AI application is often a response to risks and opportuni­
Here are a few examples of different levels of risks, ordered from high to low: 

I. If you don't do this, competitors with AI can make you obsolete. If AI poses a 
major existential threat to your business, incorporating AI must have the highest 
priority. In the 2023 Gartner study (https://oreil.lylgqi3d), 7% cited business con­
tinuity as their reason for embracing AI. This is more common for businesses 
involving document processing and information aggregation, such as financial 
analysis, insurance, and data processing. This is also common for creative work 
such as advertising, web design, and image production. You can refer to the 2023 
OpenAI study, "GPTs are GPTs" (Eloundou et al., 2023 (https://arxiv.org!abs! 
2303.10130)), to see how industries rank in their exposure to AI. 

2. If you don't do this, you'll miss opportunities to boost profits and productivity. 
Most companies embrace AI for the opportunities it brings. AI can help in most, 
if not all, business operations. AI can make user acquisition cheaper by crafting 
more effective copywrites, product descriptions, and promotional visual content. 
AI can increase user retention by improving customer support and customizing 
user experience. AI can also help with sales lead generation, internal communi­
cation, market research, and competitor tracking. 

3. You're unsure where AI will fit into your business yet, but you don't want to be left 
behind. While a company shouldn't chase every hype train, many have failed by 
waiting too long to take the leap (cue Kodak, Blockbuster, and BlackBerry). 
Investing resources into understanding how a new, transformational technology 
can impact your business isn't a bad idea if you can afford it. At bigger compa­
nies, this can be part of the R&D department. 19 

Once you've found a good reason to develop this use case, you might consider 
whether you have to build it yourself. If AI poses an existential threat to your busi­
ness, you might want to do AI in-house instead of outsourcing it to a competitor. 

19 Smaller startups, however, might have to prioritize product focus and can't afford to have even one person to 
"look around." 
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However, if you're using AI to boost profits and productivity, you might have plenty 
of buy options that can save you time and money while giving you better 
performance. 

The role of Al and humans in the application 

What role AI plays in the AI product influences the application's development and its 
requirements. Apple (https://oreil.ly/DzlHE) has a great document explaining differ­
ent ways AI can be used in a product. Here are three key points relevant to the cur­
rent discussion: 

Critical or complementary 
If an app can still work without AI, AI is complementary to the app. For exam­
ple, Face ID wouldn't work without AI-powered facial recognition, whereas 
Gmail would still work without Smart Compose. 

The more critical AI is to the application, the more accurate and reliable the AI 
part has to be. People are more accepting of mistakes when AI isn't core to the 
application. 

Reactive or proactive 
A reactive feature shows its responses in reaction to users' requests or specific 
actions, whereas a proactive feature shows its responses when there's an opportu­
nity for it. For example, a chatbot is reactive, whereas traffic alerts on Google 
Maps are proactive. 

Because reactive features are generated in response to events, they usually, but 
not always, need to happen fast. On the other hand, proactive features can be 
precomputed and shown opportunistically, so latency is less important. 

Because users don't ask for proactive features, they can view them as intrusive or 
annoying if the quality is low. Therefore, proactive predictions and generations 
typically have a higher quality bar. 

Dynamic or static 
Dynamic features are updated continually with user feedback, whereas static fea­
tures are updated periodically. For example, Face ID needs to be updated as peo­
ple's faces change over time. However, object detection in Google Photos is likely 
updated only when Google Photos is upgraded. 

In the case of AI, dynamic features might mean that each user has their own 
model, continually finetuned on their data, or other mechanisms for personaliza­
tion such as ChatGPT's memory feature, which allows ChatGPT to remember 
each user's preferences. However, static features might have one model for a 
group of users. If that's the case, these features are updated only when the shared 
model is updated. 
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It's also important to clarify the role of humans in the application. Will Al provide 
background support to humans, make decisions directly, or both? For example, for a 
customer support chatbot, AI responses can be used in different ways: 

• AI shows several responses that human agents can reference to write faster 
responses. 

• AI responds only to simple requests and routes more complex requests to 
humans. 

• AI responds to all requests directly, without human involvement. 

Involving humans in Al's decision-making processes is called human-in-the-loop. 

Microsoft (2023) proposed a framework for gradually increasing AI automation in 
products that they call Crawl-Walk-Run (https:/!oreil.ly/JW4_A): 

1. Crawl means human involvement is mandatory. 

2. Walk means AI can directly interact with internal employees. 

3. Run means increased automation, potentially including direct AI interactions 
with external users. 

The role of humans can change over time as the quality of the AI system improves. 
For example, in the beginning, when you're still evaluating AI capabilities, you might 
use it to generate suggestions for human agents. If the acceptance rate by human 
agents is high, for example, 95% of AI-suggested responses to simple requests are 
used by human agents verbatim, you can let customers interact with AI directly for 
those simple requests. 

Al product defensibility 
If you're selling AI applications as standalone products, it's important to consider 
their defensibility. The low entry barrier is both a blessing and a curse. If something is 
easy for you to build, it's also easy for your competitors. What moats do you have to 
defend your product? 

In a way, building applications on top of foundation models means providing a layer 
on top of these models.2° This also means that if the underlying models expand in 
capabilities, the layer you provide might be subsumed by the models, rendering your 
application obsolete. Imagine building a PDF-parsing application on top of ChatGPT 
based on the assumption that ChatGPT can't parse PDFs well or can't do so at scale. 
Your ability to compete will weaken if this assumption is no longer true. However, 
even in this case, a PDF-parsing application might still make sense if it's built on top 

20 A running joke in the early days of generative AI is that AI startups are OpenAI or Claude wrappers. 
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of open source models, gearing your solution toward users who want to host models 
in-house. 

One general partner at a major VC firm told me that she's seen many startups whose 
entire products could be a feature for Google Docs or Microsoft Office. If their prod­
ucts take off, what would stop Google or Microsoft from allocating three engineers to 
replicate these products in two weeks? 

In AI, there are generally three types of competitive advantages: technology, data, and 
distribution-the ability to bring your product in front of users. With foundation 
models, the core technologies of most companies will be similar. The distribution 
advantage likely belongs to big companies. 

The data advantage is more nuanced. Big companies likely have more existing data. 
However, if a startup can get to market first and gather sufficient usage data to con­
tinually improve their products, data will be their moat. Even for the scenarios where 
user data can't be used to train models directly, usage information can give invaluable 
insights into user behaviors and product shortcomings, which can be used to guide 
the data collection and training process.21 

There have been many successful companies whose original products could've been 
features of larger products. Calendly could've been a feature of Google Calendar. 
Mailchimp could've been a feature of Gmail. Photoroom could've been a feature of 
Google Photos.22 Many startups eventually overtake bigger competitors, slarting by 
building a feature that these bigger competitors overlooked. Perhaps yours can be the 
next one. 

Setting Expectations 
Once you've decided that you need to build this amazing AI application by yourself, 
the next step is to figure out what success looks like: how will you measure success? 
The most important metric is how this will impact your business. For example, if it's 
a customer support chatbot, the business metrics can include the following: 

• What percentage of customer messages do you want the chatbot to automate? 

• How many more messages should the chatbot allow you to process? 

• How much quicker can you respond using the chatbot? 

• How much human labor can the chatbot save you? 

21 During the process of writing this book, I could hardly talk to any AI startup without hearing the phrase "data 

flywheel." 

22 Disclaimer: I'm an investor in Photo room. 
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chatbot can answer more messages, but that doesn't mean it'll make users happy, 
so it's important to track customer satisfaction and customer feedback in general. 
"User Feedback" on page 474 discusses how to design a feedback system. 

To ensure a product isn't put in front of customers before it's ready, have clear 
expectations on its usefulness threshold: how good it has to be for it to be useful. Use­
fulness thresholds might include the following metrics groups: 

• Quality metrics to measure the quality of the chatbot' s responses. 

• Latency metrics including TTFT (time to first token), TPOT (time per output 
token), and total latency. What is considered acceptable latency depends on your 
use case. If all of your customer requests are currently being processed by 
humans with a median response time of an hour, anything faster than this might 
be good enough. 

• Cost metrics: how much it costs per inference request. 

• Other metrics such as interpretability and fairness. 

If you're not yet sure what metrics you want to use, don't worry. The rest of the book 
will cover many of these metrics. 

Milestone Planning 
Once you've set measurable goals, you need a plan to achieve these goals. How to get 
to the goals depends on where you start. Evaluate existing models to understand their 
capabilities. The stronger the off-the-shelf models, the less work you'll have to do. For 
example, if your goal is to automate 60% of customer support tickets and the off-the­
shelf model you want to use can already automate 30% of the tickets, the effort you 
need to put in might be less than if it can automate no tickets at all. 

It's likely that your goals will change after evaluation. For example, after evaluation, 
you may realize that the resources needed to get the app to the usefulness threshold 
,...-ill be more than its potential return, and, therefore, you no longer want to pursue it. 

Planning an AI product needs to account for its last mile challenge. Initial success 
with foundation models can be misleading. As the base capabilities of foundation 
models are already quite impressive, it might not take much time to build a fun 
demo. However, a good initial demo doesn't promise a good end product. It might 
take a weekend to build a demo but months, and even years, to build a product. 

In the paper UltraChat, Ding et al. (2023) (https://arxiv.org/abs/2305.14233) shared 
that "the journey from 0 to 60 is easy, whereas progressing from 60 to 100 becomes 
exceedingly challenging." Linkedln (2024) (https://www.linkedin.com/blog!engineer 
inglgenerative-ai/musings-on-building-a-generative-ai-product) shared the same sen­
timent. It took them one month to achieve 80% of the experience they wanted. This 
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initial success made them grossly underestimate how much time it'd take them to 
improve the product. They found it took them four more months to finally surpass 
95%. A lot of time was spent working on the product kinks and dealing with halluci­
nations. The slow speed of achieving each subsequent 1 % gain was discouraging. 

Maintenance 
Product planning doesn't stop at achieving its goals. You need to think about how 
this product might change over time and how it should be maintained. Maintenance 
of an AI product has the added challenge of Al's fast pace of change. The AI space 
has been moving incredibly fast in the last decade. It'll probably continue moving fast 
for the next decade. Building on top of foundation models today means committing 
to riding this bullet train. 

Many changes are good. For example, the limitations of many models are being 
addressed. Context lengths are getting longer. Model outputs are getting better. 
Model inference, the process of computing an output given an input, is getting faster 
and cheaper. Figure 1-11 shows the evolution of inference cost and model perfor­
mance on Massive Multitask Language Understanding {MMLU) (Hendrycks et al., 
2020 (https:/larxiv.org/abs/2009.03300)), a popular foundation model benchmark, 
between 2022 and 2024. 

MMLU Performance vs. Cost Over Time (2022-2024) 
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Figure 1-11. The cost of AI reasoning rapidly drops over time. Image from Katrina 
Nguyen (https:/!oreil.ly!UyL8r) (2024). 
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investment. The best option today might tum into the worst option tomorrow. You 
decide to build a model in-house because it seems cheaper than paying for 

model providers, only to find out after three months that model providers have 
dropped their prices in half, making in-house the expensive option. You might invest 
in a third-party solution and tailor your infrastructure around it, only for the pro­
vider to go out of business after failing to secure funding. 

Some changes are easier to adapt to. For example, as model providers converge to the 
same API, it's becoming easier to swap one model API for another. However, as each 
model has its quirks, strengths, and weaknesses, developers working with the new 
model will need to adjust their workflows, prompts, and data to this new model. 
Without proper infrastructure for versioning and evaluation in place, the process can 
cause a lot of headaches. 

Some changes are harder to adapt to, especially those around regulations. Technolo­
gies surrounding AI are considered national security issues for many countries, 
meaning resources for AI, including compute, talent, and data, are heavily regulated. 
The introduction of Europe's General Data Protection Regulation (GDPR), for exam­
ple, was estimated to cost businesses $9 billion (https://oreil.ly!eDJBB) to become 
compliant. Compute availability can change overnight as new laws put more restric­
tions on who can buy and sell compute resources (see the US October 2023 Executive 
Order (https:!/oreil.ly!eYTmr)). If your GPU vendor is suddenly banned from selling 
GPUs to your country, you're in trouble. 

Some changes can even be fatal. For example, regulations around intellectual prop­
erty (IP) and AI usage are still evolving. If you build your product on top of a model 
trained using other people's data, can you be certain that your product's IP will 
always belong to you? Many IP-heavy companies I've talked to, such as game studios, 
hesitate to use AI for fear of losing their IPs later on. 

Once you've committed to building an AI product, let's look into the engineering 
stack needed to build these applications. 

The Al Engineering Stack 
AI engineering's rapid growth also induced an incredible amount of hype and FOMO 
(fear of missing out). The number of new tools, techniques, models, and applications 
introduced every day can be overwhelming. Instead of trying to keep up with the 
constantly shifting sand, let's look into the fundamental building blocks of AI 
engineering. 
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To understand AI engineering, it's important to recognize that AI engineering 
evolved out of ML engineering. When a company starts experimenting with founda­
tion models, it's natural that its existing ML team should lead the effort. Some com­
panies treat AI engineering the same as ML engineering, as shown in Figure 1-l 2. 
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Figure 1-12. Many companies put AI engineering and ML engineering under the same 
umbrella, as shown in the job headlines on Linkedin from December 17, 2023. 

Some companies have separate job descriptions for Al engineering, as shown in 
Figure 1-13. 

Regardless of where organizations position AI engineers and ML engineers, their 
roles have significant overlap. Existing ML engineers can add AI engineering to their 
lists of skills to expand their job prospects. However, there are also Al engineers with 
no previous ML experience. 

To best understand AI engineering and how it differs from traditional ML engineer­
ing, the following section breaks down different layers of the AI application building 
process and looks at the role each layer plays in Al engineering and ML engineering. 
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Figure 1-13. Some companies have separate job descriptions for AI engineering, as 
shown in the job headlines on Linkedln from December 17, 2023. 

Three Layers of the Al Stack 
There are three layers to any AI application stack: application development, model 
development, and infrastructure. When developing an AI application, you'll likely 
start from the top layer and move down as needed: 

Application development 
With models readily available, anyone can use them to develop applications. This 
is the layer that has seen the most action in the last two years, and it is still rap­
idly evolving. Application development involves providing a model with good 
prompts and necessary context. This layer requires rigorous evaluation. Good 
applications also demand good interfaces. 

Model development 
This layer provides tooling for developing models, including frameworks for 
modeling, training, finetuning, and inference optimization. Because data is cen -
tral to model development, this layer also contains dataset engineering. Model 
development also requires rigorous evaluation. 

Infrastructure 
At the bottom is the stack is infrastructure, which includes tooling for model 
serving, managing data and compute, and monitoring. 

The Al Engineering Stack 37 



These three layers and examples of responsibilities for each layer are shown in 
Figure 1-14. 

Figure 1-14. Three layers of the AI engineering stack. 
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To get a sense of how the landscape has evolved with foundation models, in March 
2024, I searched GitHub for all Al-related repositories with at least 500 stars. Given 
the prevalence of GitHub, I believe this data is a good proxy for understanding the 
ecosystem. In my analysis, I also included repositories for applications and models, 
which are the products of the application development and model development lay­
ers, respectively. I found a total of 920 repositories. Figure 1-15 shows the cumulative 
number of repositories in each category month-over-month. 
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Figure 1-15. Cumulative count of repositories by category over time. 
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data shows a big jump in the number of AI toolings in 2023, after the introduc­
of Stable Diffusion and ChatGPT. In 2023, the categories that saw the highest 

were applications and application development. The infrastructure layer 
some growth, but it was much less than the growth seen in other layers. This is 

expected. Even though models and applications have changed, the core infrastruc­
needs-resource management, serving, monitoring, etc.-remain the same. 

This brings us to the next point. While the level of excitement and creativity around 
foundation models is unprecedented, many principles of building AI applications 

. remain the same. f-or enterprise use cases, AI applications still need to solve business 
problems, and, therefore, it's still essential to map from business metrics to ML met­
rics and vice versa. You still need to do systematic experimentation. With classical 
ML engineering, you experiment with different hyperparameters. With foundation 
models, you experiment with different models, prompts, retrieval algorithms, sam­
pling variables, and more. (Sampling variables are discussed in Chapter 2.) We still 
want to make models run faster and cheaper. It's still important to set up a feedback 
loop so that we can iteratively improve our applications with production data. 

This means that much of what ML engineers have learned and shared over the last 
decade is still applicable. This collective experience makes it easier for everyone to 
begin building AI applications. However, built on top of these enduring principles 
are many innovations unique to AI engineering, which we'll explore in this book. 

Al Engineering Versus ML Engineering 
While the unchanging principles of deploying AI applications are reassuring, it's also 
important to understand how things have changed. This is helpful for teams that 
want to adapt their existing platforms for new AI use cases and developers who are 
interested in which skills to learn to stay competitive in a new market. 

At a high level, building applications using foundation models today differs from tra­
ditional ML engineering in three major ways: 

1. Without foundation models, you have to train your own models for your appli­
cations. With AI engineering, you use a model someone else has trained for you. 
This means that AI engineering focuses less on modeling and training, and more 
on model adaptation. 

2. Al engineering works with models that are bigger, consume more compute 
resources, and incur higher latency than traditional ML engineering. This means 
that there's more pressure for efficient training and inference optimization. A 
corollary of compute-intensive models is that many companies now need more 
GPUs and work with bigger compute clusters than they previously did, which 

The Al Engineering Stack I 39 



means there's more need for engineers who know how to work with GPUs and 
big clusters.23 

3. AI engineering works with models that can produce open-ended outputs. Open­
ended outputs give models the flexibility to be used for more tasks, but they are 
also harder to evaluate. This makes evaluation a much bigger problem in AI 
engineering. 

In short, AI engineering differs from ML engineering in that it's less about model 
development and more about adapting and evaluating models. I've mentioned model 
adaptation several times in this chapter, so before we move on, I want to make sure 
that we're on the same page about what model adaptation means. In general, model 
adaptation techniques can be divided into two categories, depending on whether they 
require updating model weights. 

Prompt-based techniques, which include prompt engineering, adapt a model without 
updating the model weights. You adapt a model by giving it instructions and context 
instead of changing the model itself. Prompt engineering is easier to get started and 
requires less data. Many successful applications have been built with just prompt 
engineering. Its ease of use allows you to experiment with more models, which 
increases your chance of finding a model that is unexpectedly good for your applica­
tions. However, prompt engineering might not be enough for complex tasks or appli­
cations with strict performance requirements. 

Finetuning, on the other hand, requires updating model weights. You adapt a model by 
making changes to the model itself. In general, finetuning techniques are more com­
plicated and require more data, but they can improve your model's quality, latency, 
and cost significantly. Many things aren't possible without changing model weights, 
such as adapting the model to a new task it wasn't exposed to during training. 

Now, let's zoom into the application development and model development layers to 
see how each has changed with AI engineering, starting with what existing ML engi­
neers are more familiar with. This section gives an overview of different processes 
involved in developing an AI application. How these processes work will be discussed 
throughout this book. 

Model development 
Model development is the layer most commonly associated with traditional ML engi­
neering. It has three main responsibilities: modeling and training, dataset engineer­
ing, and inference optimization. Evaluation is also required, but because most people 

23 As the head of AI at a Fortune 500 company told me: his team knows how to work with 10 GPUs, but they 
don't know how to work with 1,000 GPUs. 
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and training. Modeling and training refers to the process of coming up with 
architecture, training it, and finetuning it. Examples of tools in this category 

Google's TensorFlow, Hugging Face's Transformers, and Meta's PyTorch. 

ML models requires specialized ML knowledge. It requires knowing dif­
types of ML algorithms (such as clustering, logistic regression, decision trees, 

collaborative filtering) and neural network architectures (such as feedforward, 
convolutional, and transformer). It also requires understanding how a 

learns, including concepts such as gradient descent, loss function, regulariza-

the availability of foundation models, ML knowledge is no longer a must-have 
for building AI applications. I've met many wonderful and successful AI application 
builders who aren't at all interested in learning about gradient descent. However, ML 

is still extremely valuable, as it expands the set of tools that you can use 
•. and helps troubleshooting when a model doesn't work as expected. 

On the Differences Among Training, Pre-Training, 
Finetuning, and Post-Training 

Training always involves changing model weights, but not all changes to model 
weights constitute training. For example, quantization, the process of reducing the 
precision of model weights, technically changes the model's weight values but isn't 
considered training. 

The term training can often be used in place of pre-training, finetuning, and post­
training, which refer to different training phases: 

Pre-training 
Pre-training refers to training a model from scratch-the model weights are ran­
domly initialized. For LLMs, pre-training often involves training a model for text 
completion. Out of all training steps, pre-training is often the most resource­
intensive by a long shot. For the InstructGPT model, pre-training takes up to 
98% of the overall compute and data resources (https://oreil.ly!G3LUh). Pre­
training also takes a long time to do. A small mistake during pre-training can 
incur a significant financial loss and set back the project significantly. Due to the 
resource-intensive nature of pre-training, this has become an art that only a few 
practice. Those with expertise in pre-training large models, however, are heavily 
sought after.24 

24 And they are offered incredible compensation packages (https://oreil.ly!AhANP). 
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Finetuning 
Finetuning means continuing to train a previously trained model-the model 
weights are obtained from the previous training process. Because the model 
already has certain knowledge from pre-training, finetuning typically requires 
fewer resources (e.g., data and compute) than pre-training. 

Post-training 
Many people use post-training to refer to the process of training a model after the 
pre-training phase. Conceptually, post-training and finetuning are the same and 
can be used interchangeably. However, sometimes, people might use them differ­
ently to signify the different goals. It's usually post-training when it's done by 
model developers. For example, OpenAI might post-train a model to make it 
better at following instructions before releasing it. It's finetuning when it's done 
by application developers. For example, you might finetune an OpenAI model 
(which might have been post-trained itself) to adapt it to your needs. 

Pre-training and post-training make up a spectrum.25 Their processes and toolings 
are very similar. Their differences are explored further in Chapters 2 and 7. 

Some people use the term training to refer to prompt engineering, which isn't correct. 
I read a Business Insider article (https://oreil.ly/OVqmX) where the author said she 
trained ChatGPT to mimic her younger self. She did so by feeding her childhood 
journal entries into ChatGPT. Colloquially, the author's usage of the word training is 
correct, as she's teaching the model to do something. But technically, if you teach a 
model what to do via the context input into the model, you're doing prompt engi­
neering. Similarly, I've seen people using the term finetuning when what they do is 
prompt engineering. 

Dataset engineering. Dataset engineering refers to curating, generating, and annotat­
ing the data needed for training and adapting AI models. 

In traditional ML engineering, most use cases are close-ended-a model's output can 
only be among predefined values. For example, spam classification with only two 
possible outputs, "spam" and "not spam", is dose-ended. Foundation models, how­
ever, are open-ended. Annotating open-ended queries is much harder than annotat­
ing dose-ended queries-it's easier to determine whether an email is spam than to 
write an essay. So data annotation is a much bigger challenge for AI engineering. 

25 If you fmd the terms "pre-training" and "post-training" lacking in imagination, you're not alone. The AI 
research community is great at many things, but naming isn't one of them. We already talked about how 
"large language models" is hardly a scientific term because of the ambiguity of the word "large". And I really 
wish people would stop publishing papers with the title "Xis all you need." 
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difference is that traditional ML engineering works more with tabular data, 
where.as foundation models work with unstructured data. In AI engineering, data 

is more about deduplication, tokenization, context retrieval, and qual­
including removing sensitive information and toxic data. Dataset engi­

n:eE:nrig is the focus of Chapter 8. 

people argue that because models are now commodities, data will be the main 
making dataset engineering more important than ever. How much 

you need depends on the adapter technique you use. Training a model from 
generally requires more data than finetuning, which, in turn, requires more 

than prompt engineering. 

of how much data you need, expertise in data is useful when examining a 
as its training data gives important clues about that model's strengths and 

Inference optimization. Inference optimization means making models faster and 
cheaper. Inference optimization has always been important for ML engineering. 
Users never say no to faster models, and companies can always benefit from cheaper 
inference. However, as foundation models scale up to incur even higher inference 

and latency, inference optimization has become even more important. 

One challenge with foundation models is that they are often autoregressive-tokens 
are generated sequentially. If it takes 10 ms for a model to generate a token, it'll take a 
second to generate an output of 100 tokens, and even more for longer outputs. As 
users are getting notoriously impatient, getting AI applications' latency down to the 
100 ms latency (https://oreil.ly!gGXZ-) expected for a typical internet application is a 
huge challenge. Inference optimization has become an active subfield in both indus­
try and academia. 

A summary of how the importance of different categories of model development 
change with AI engineering is shown in Table 1-4. 

Table 1-4. How different responsibilities of model development have changed with 
foundation models. 

Category Building with traditional ML Building with foundation models 

Modeling and training Ml knowledge is required for training a ML knowledge is a nice-to-have, not a must-have' 
model from scratch 

Dataset engineering More about feature engineering, especially Less about feature engineering and more about data 
with tabular data deduplication, tokenization, context retrieval, and 

quality control 

Inference optimization Important Even more important 

• Many people would dispute this claim, saying that ML knowledge is a must-have. 
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Inference optimization techniques, including quantization, distillation, and parallel­
ism, are discussed in Chapters 7 through 9. 

Application development 
With traditional ML engineering, where teams build applications using their propri­
etary models, the model quality is a differentiation. With foundation models, where 
many teams use the same model, differentiation must be gained through the applica­
tion development process. 

The application development layer consists of these responsibilities: evaluation, 
prompt engineering, and AI interface. 

Evaluation. Evaluation is about mitigating risks and uncovering opportunities. Eval­
uation is necessary throughout the whole model adaptation process. Evaluation is 
needed to select models, to benchmark progress, to determine whether an application 
is ready for deployment, and to detect issues and opportunities for improvement in 
production. 

While evaluation has always been important in ML engineering, it's even more 
important with foundation models, for many reasons. The challenges of evaluating 
foundation models are discussed in Chapter 3. To summarize, these challenges 
chiefly arise from foundation models' open-ended nature and expanded capabilities. 
For example, in close-ended ML tasks like fraud detection, there are usually expected 
ground truths that you can compare your model's outputs against. If a model's out­
put differs from the expected output, you know the model is wrong. For a task like 
chatbots, however, there are so many possible responses to each prompt that it is 
impossible to curate an exhaustive list of ground truths to compare a model's 
response to. 

The existence of so many adaptation techniques also makes evaluation harder. A sys­
tem that performs poorly with one technique might perform much better with 
another. When Google launched Gemini in December 2023, they claimed that Gem­
ini is better than ChatGPT in the MMLU benchmark (Hendrycks et al., 2020 (https:// 
arxiv.org/abs/2009.03300)). Google had evaluated Gemini using a prompt engineer­
ing technique called CoT@32(https://oreil.ly!VDwaR). In this technique, Gemini was 
shown 32 examples, while ChatGPT was shown only 5 examples. When both were 
shown five examples, ChatGPT performed better, as shown in Table 1-5. 
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engineering and context construction. Prompt engineering is about getting AI 
models to express the desirable behaviors from the input alone, without changing the 

weights. The Gemini evaluation story highlights the impact of prompt engi­
neering on model performance. By using a different prompt engineering technique, 
Gemini Ultra's performance on MMLU went from 83.7% to 90.04%. 

It's possible to get a model to do amazing things with just prompts. The right instruc­
·_ tions can get a model to perform the task you want, in the format of your choice. 

Prompt engineering is not just about telling a model what to do. It's also about giving 
the model the necessary context and tools to do a given task. For complex tasks with 
long context, you might also need to provide the model with a memory management 
system so that the model can keep track of its history. Chapter 5 discusses prompt 
engineering, and Chapter 6 discusses context construction. 

Al interface. AI interface means creating an interface for end users to interact with 
your AI applications. Before foundation models, only organizations with sufficient 
resources to develop AI models could develop AI applications. These applications 
were often embedded into the organizations' existing products. For example, fraud 
detection was embedded into Stripe, Venmo, and PayPal. Recommender systems 
were part of social networks and media apps like Netflix, TikTok, and Spotify. 

With foundation models, anyone can build AI applications. You can serve your AI 
applications as standalone products or embed them into other products, including 
products developed by other people. For example, ChatGPT and Perplexity are 
standalone products, whereas GitHub's Copilot is commonly used as a plug-in in 
VSCode, and Grammarly is commonly used as a browser extension for Google Docs. 
Midjourney can either be used via its standalone web app or via its integration in 
Discord. 
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There need to be tools that provide interfaces for standalone AI applications or make 
it easy to integrate AI into existing products. Here are just some of the interfaces that 
are gaining popularity for AI applications: 

• Standalone web, desktop, and mobile apps.26 

• Browser extensions that let users quickly query AI models while browsing. 

• Chatbots integrated into chat apps like Slack, Discord, WeChat, and WhatsApp. 

• Many products, including VSCode, Shopify, and Microsoft 365, provide APis 
that let developers integrate AI into their products as plug-ins and add-ons. 
These APis can also be used by AI agents to interact with the world, as discussed 
in Chapter 6. 

While the chat interface is the most commonly used, AI interfaces can also be voice­
based (such as with voice assistants) or embodied (such as in augmented and virtual 
reality). 

These new AI interfaces also mean new ways to collect and extract user feedback. The 
conversation interface makes it so much easier for users to give feedback in natural 
language, but this feedback is harder to extract. User feedback design is discussed in 
Chapter 10. 

A summary of how the importance of different categories of app development 
changes with AI engineering is shown in Table 1-6. 

Table 1-6. The importance of different categories in app development for Al engineering 
and ML engineering. 

Category Building with trad,t10nal ML Building with foundation models 

Al interface Less important Important 

Prompt engineering Not applicable Important 

Evaluation Important More important 
.. 

Al Engineering Versus Full-Stack Engineering 
The increased emphasis on application development, especially on interfaces, brings 
Al engineering closer to full-stack development. 27 The rising importance of interfaces 
leads to a shift in the design of AI toolings to attract more frontend engineers. Tradi­
tionally, ML engineering is Python-centric. Before foundation models, the most 
popular ML frameworks supported mostly Python APis. Today, Python is still popu-

26 Streamlit, Gradio, and Plotly Dash are common tools for building AI web apps. 

27 Anton Bacaj told me that "AI engineering is just software engineering with AI models thrown in the stack." 
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support for JavaScript APis, with LangChain.js 
Transformers.js (https://github.com/ 

OpenAI's Node library (https:l/github.comlopenai/ 
and Vercel's AI SDK (https:l/github.com/vercel!ai). 

manv AI engineers come from traditional ML backgrounds, more are increas­
comi~g from web development or full-stack backgrounds. An advantage that 

engineers have over traditional ML engineers is their ability to quickly turn 
into demos, get feedback, and iterate. 

traditional ML engineering, you usually start with gathering data and training a 
Building the product comes last. However, with AI models readily available 

it's possible to start with building the product_ first, and only invest in data and 
once the product shows promise, as visualized in Figure 1-16. 

ML Engineering: 

Al Engineering: 

Data 

Product 

➔ Model ➔ Product 

.. Data ➔ Model 

Figure 1-16. The new AI engineering workflow rewards those who can iterate fast. 
._ Image recreated from "The Rise of the AI Engineer" (Shawn Wang, 2023 (https:/1 

oreil.ly/OOZK-) ). 

In traditional ML engineering, model development and product development are 
often disjointed processes, with ML engineers rarely involved in product decisions at 
many organizations. However, with foundation models, AI engineers tend to be 
much more involved in building the product. 

Summary 
I meant this chapter to serve two purposes. One is to explain the emergence of AI 
engineering as a discipline, thanks to the availability of foundation models. Two is to 
give an overview of the process needed to build applications on top of these models. I 
hope that this chapter achieved this goal. As an overview chapter, it only lightly 
touched on many concepts. These concepts will be explored further in the rest of the 
book. 

The chapter discussed the rapid evolution of AI in recent years. It walked through 
some of the most notable transformations, starting with the transition from language 
models to large language models, thanks to a training approach called self­
supervision. It then traced how language models incorporated other data modalities 
to become foundation models, and how foundation models gave rise to AI 
engineering. 
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The rapid growth of AI engineering is motivated by the many applications enabled by 
the emerging capabilities of foundation models. This chapter discussed some of the 
most successful application patterns, both for consumers and enterprises. Despite the 
incredible number of AI applications already in production, we're still in the early 
stages of AI engineering, with countless more innovations yet to be built. 

Before building an application, an important yet often overlooked question is 
whether you should build it. This chapter discussed this question together with major 
considerations for building AI applications. 

While AI engineering is a new term, it evolved out of ML engineering, which is the 
overarching discipline involved with building applications with all ML models. Many 
principles from ML engineering are still applicable to AI engineering. However, AI 
engineering also brings with it new challenges and solutions. The last section of the 
chapter discusses the AI engineering stack, including how it has changed from ML 
engineering. 

One aspect of AI engineering that is especially challenging to capture in writing is the 
incredible amount of collective energy, creativity, and engineering talent that the 
community brings. This collective enthusiasm can often be overwhelming, as it's 
impossible to keep up-to-date with new techniques, discoveries; and engineering 
feats that seem to happen constantly. 

One consolation is that since AI is great at information aggregation, it can help us 
aggregate and summarize all these new updates. But tools can help only to a certain 
extent. The more overwhelming a space is, the more important it is to have a frame­
work to help us navigate it. This book aims to provide such a framework. 

The rest of the book will explore this framework step-by-step, starting with the fun­
damental building block of AI engineering: the foundation models that make so 
many amazing applications possible. 
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