M616 »

AI Ein14min

DSA 502 CRN 3542 Spring 2026

T-Th 4:30 PM - 5:45 PM SAMC 393


MIDTERM

FINAL


edit SideBar

Topics from the video

https://youtu.be/nUqgjQs5pJk?si=qZMz7JUd4STb8CKG (with time location)

  • AI Engineering (0:24)
  • Foundation Models (1:00)
  • Large Language Models (LLMs) (1:26)
  • Transformer Architecture (1:57)
  • Attention Mechanism (2:25)
  • Model Learning & Parameters (3:47)
    • Model Parameters (3:53)
    • Hyperparameters (4:10)
    • Temperature (4:13)
    • Top K and Top P (4:31)
  • Tokens (5:01)
  • Model Context (5:27)
  • Prompt Engineering (6:03)
    • System Prompt (6:28)
    • User Prompt (6:34)
    • Zero-shot Learning (6:50)
    • Few-shot Learning (6:57)
    • In-context Learning (7:09)
  • Model Adaptation & Optimization
    • Fine-tuning (7:19)
    • Parameter Efficient Fine-tuning (PEFT) (7:45)
    • LoRA (8:02)
    • Quantization (8:10)
    • Distillation (8:20)
    • Preference Fine-tuning (8:40)
    • Retrieval Augmented Generation (RAG) (9:03)
  • Embeddings (9:21)
  • Vector Database (9:37)
  • Chunking (9:54)
  • Ranking (10:07)
  • Model Architecture Components
    • Encoders and Decoders (11:16)
  • AI Agents & Tools (10:38)
    • Agents (10:40)
    • Tools (10:56)
  • Model Deployment & Performance
    • Inference (11:33)
    • Online Inference (11:47)
    • Batch Inference (11:55)
    • Latency (12:08)
    • Streaming (12:18)
  • Model Evaluation
    • Model Benchmarks (12:30)
    • Metrics (12:47)
    • Perplexity (12:52)
    • BLEU (13:07)
    • ROUGE (13:20)
    • LLM as Judge (13:45)
  • System Integration
    • Model Context Protocol (MCP) (14:04)
Page last modified on October 04, 2025, at 04:27 pm

Edit - History - Print - Recent Changes (All) - Search